
Service call type: AQ_RestServiceClient
The service makes it possible to call a REST webservice.AQ_RestServiceClient

Parameters
The following parameters can be set for the service from Encore:

Name Description Type Required Direction Select
module

restService The name of the along with the module where it is defined.REST service Module
Element

Yes Input Yes

operation The name of the operation of the REST service that needs to be called. String Yes Input No

url The URL of the REST webservice. String
Expression

No Input No

connectionOv
erride

The name to use when overriding connection in the Runtime configuration files (more about
this in the following section).

Not that if the expression returns the value (?) as result, an error is thrown. In this unknown
scenario no fallback is used.

String
Expression

No Input No

mapping The name of the data mapping to use along with the module where it can be found. Data
mapping

No BiDirectional No

username The username to use in the service calling. String No Input No

password The password to use .in the service calling String No Input No

Overriding parameters
The parameters url, username and password can be overridden in the .Runtime's configuration files

To do so, one can use either the name of the service call of type AQ_RestServiceClient in Blueriq Encore or the value given to the connectionOverride
field.

The overriding can be done in the file by either using the name of the service call in Blueriq Encore (SendRest20) like this:application.properties

blueriq.connection.SendRest20.http.url=http://randomUrl:8080
blueriq.connection.SendRest20.http.username=randomUsername
blueriq.connection.SendRest20.http.password=randomPassword

... or by using the connection name (connectionName) like this:

blueriq.connection.connectionName.http.url=http://randomUrl:8080
blueriq.connection.connectionName.http.username=randomUsername
blueriq.connection.connectionName.http.password=randomPassword

In order to illustrate the benefit of using the new parameter a simple example will be presented.connectionOverride

Say there is webservice with 5 operations: and . For each operation there is a corresponding service call and for each add, subtract, multiply, divide modulo
of those service calls the and are overridden in the file using the name of the service call. This means that url, username password application.properties
even if the services call the same webservice (thus calling the same url with the same credentials) the override data must be specified for each of them.
This is where the connectionOverride becomes useful by allowing each of those services to use a common connection name and eliminating the need of
duplication.

1.
2.

3.

If the value for one of those parameters is specified in more than one place (for instance if the parameter is defined in Encore but also url
overridden using the service name) the following prioritization is used by the Runtime:

If there is a defined in Encore then that connection will be used over the others;connectionOverride
If there is no defined in Encore, the Runtime will look into the configuration files for (and will use if it exists) a connectionOverride
property to override parameters using the service's name;
Finally, if there is no value defined in Encore and there is no property to override a parameter in the connectionOveride
configuration files then the values defined in the model in Encore for the and will be used.url, username password

https://my.blueriq.com/display/DOC/REST+service
https://my.blueriq.com/display/DOC/Reference+Guide%3A+Properties

Error handling
When the runtime sumbles upon an arror during execution of the AQ_RestServiceClient, there are serveral options to handle this:

The exception exit can be used to handle exceptions such as a failing data mapping, or a response body that doesn't match the domain schema.
Use the exit events to handle timeouts, client errors (http status code 4xx), and server errors (http status code 5xx).

If there is a need to distinguish on a more specific http status code than the aforemantioned ranges, you can use the header in the REST
 to map the status code with the name "Status" to the profile.service

Exit events

Name Description Type

Timeout When the REST request returns a timeout exception. Contin
ue

ClientError
(since 16.7)

When the REST request returns a 4xx exception. Contin
ue

ServerError
(since 16.7)

When the REST request returns a 5xx exception. Contin
ue

default exit
event

All unmapped events will be redirected to the exit node of the service call, even errors. Therefore it is default
recommended to always map all possible expected exit events.

Contin
ue

Authentication options
There are several authentication options, which are configurable per connection with properties:

No authentication

When no username and password are set for the service call (none in Encore and also none in the), then no authentication will be Connections Properties
attempted. You should use this when the Rest Endpoint that you are calling is not secured.

Basic authentication

When a username and password are supplied, either in Encore or in the , these credentials will be supplied to the Rest Endpoint.Connections Properties

OpenID Connect authentication

See for more information.OpenID Connect

Oauth2 authentication

When the Rest Endpoint that needs to be called is secured with OAuth2, you can set the property blueriq.connection.<connectionName>.http.
 to . You need to define a Spring Security Oauth2 Client Registration and Provider and set the authentication oauth2 blueriq.connection.

 to the corresponding client registration. See for those. <connectionName>.http.oauth2-client-registration Connections Properties

Since 17.0 we use , which makes it a lot more versatile and better configurable. Spring Security OAuth2

Final considerations

One must be consistent in the way it assigns value to the service parameters. Giving value to one parameter in a place and to another
parameter in another place might prove faulty. For instance if one overrides the by using a connection override but keeps the andurl username

values in Encore, the latter will not be used by the Runtime since it expects them to also be overridden in the configuration files.password

OAuth2 describes an authentication scheme. In its specification, it is explained information should be in requests and responses, but not what h
 this information should be transmitted.ow

Therefore, we use sensible defaults as described in this section. If you need other behavior, you can develop a custom Blueriq extension, as
described below.

https://my.blueriq.com/display/DOC/REST+service
https://my.blueriq.com/display/DOC/REST+service
https://my.blueriq.com/display/DOC/Connections+Properties
https://my.blueriq.com/display/DOC/Connections+Properties
https://my.blueriq.com/display/DOC/OpenID+Connect
https://my.blueriq.com/display/DOC/Connections+Properties
https://docs.spring.io/spring-security/reference/servlet/oauth2/client/core.html#oauth2Client-client-registration

After

spring:
 security:
 oauth2:
 client:
 registration:
 my-oauth2-client:
 provider: my-auth-server
 client-id: my-client-id
 client-authentication-method: client_secret_basic
 client-secret: secret-password-text
 authorization-grant-type: client_credentials
 provider:
 my-auth-server:
 token-uri: https://identity.provider.com/token
blueriq:
 connection:
 my-connection1:
 http:
 url: https://some.domain.com/resource1
 authentication: oauth2
 oauth2-client-registration: my-oauth2-client
 my-connection2:
 http:
 url: https://some.domain.com/resource2
 authentication: oauth2
 oauth2-client-registration: my-oauth2-client

When requesting a token, the Client ID and the Client Secret will be sent as Basic Authentication as default, but you can also use
client_secret_post as client-authentication-method so it will be sent in the body.
When requesting a token, the POST method is used.
In the token response, we expect a JSON structure that at least contains an :access_token and a token_type

{
 "access_token": "f608a968-b1ef-457a-8d1a-71ee007ac4d2",
 "token_type": "bearer"
}

Access tokens are not cached. Each Rest Service call will request a new token.

Customization

If you need different behavior, you can write your own custom Access Token Provider, that needs to implement the com.blueriq.component.api.
 interface and you need to define it as a Spring Bean in your application.oauth2.Oauth2AccessTokenProvider

Limitations

The current implementation is limited to one Access Token Provider per Blueriq Runtime, so all of your OAuth2 enabled Rest Service
Calls will use the same implementation of the Access Token Provider.
The default implementation only supports the grant type.client_credentials

	Service call type: AQ_RestServiceClient

