
Blueriq Case Engine
The Case Engine manages all operations on cases, case data and tasks. It communicates with the Blueriq Runtime through asynchronous messages and
a REST API.

The Case Engine is essential to use the event driven DCM architecture and depends on multiple other components to function properly.

This section explains how to install the Case Engine, how to configure it and which other components are needed to be installed.

Installation
The Case Engine currently is a Runtime with specific configuration. It is installed by deploying the Runtime WAR to a supported application server, see Inst

. Alternatively you can use the which includes the case engine with configuration.alling Runtime Blueriq DCM Development Installation

Dependencies
The Case Engine depends on the following components:

Audit component
DCM Lists Components
Timeline SQL Store component
Trace SQL Store component
DCM queueing
Document database MongoDB
Customerdata service
Process SQL store component
Case Engine Scheduler
Case Engine Scheduler Quartz

The file needs to have the following content to enable these profiles:bootstrap.properties

bootstrap.propeties

spring.profiles.active=native,\
 case-engine,\
 customerdata-client,\
 dcm-lists-publisher,\
 externaldatasources,\
 process-sql-store,\
 timeline-event-publisher-amqp,\
 trace-event-publisher-amqp,\
 audit

Configuration
Specific for the case engine there are multiple properties that need to be set.

These properties are divided into three files:

application.properties: common properties that concern security, logging and the connection to the customer data
application- .propertiescase-engine : properties for several queues, MongoDB and Quartz
application- .propertiesexternaldatasources : properties that enable the Case Engine to communicate with the Process SQL Store

Create the files in the additional config location of the case engine and copy and paste the corresponding properties into each file.

When using the this configuration is includedBlueriq DCM Development Installation

https://my.blueriq.com/display/DOC/Installing+Runtime
https://my.blueriq.com/display/DOC/Installing+Runtime
https://my.blueriq.com/display/DOC/Blueriq+DCM+Development+Installation
https://my.blueriq.com/display/DOC/Audit+component
https://my.blueriq.com/display/DOC/DCM+Lists+Components
https://my.blueriq.com/display/DOC/Timeline+SQL+Store+component
https://my.blueriq.com/display/DOC/Trace+SQL+Store+component
https://my.blueriq.com/display/DOC/DCM+queueing
https://my.blueriq.com/display/DOC/Document+database+MongoDB
https://my.blueriq.com/display/DOC/Customerdata+service
https://my.blueriq.com/display/DOC/Process+SQL+store+component
https://my.blueriq.com/display/DOC/Case+Engine+Scheduler
https://my.blueriq.com/display/DOC/Case+Engine+Scheduler+Quartz
https://my.blueriq.com/display/DOC/Blueriq+DCM+Development+Installation

application.properties

Users
blueriq.security.auth-providers.local01.type=in-memory
blueriq.security.auth-providers.local01.users.location=users.properties
blueriq.security.auth-providers-chain=local01

Customerdata
blueriq.customerdata-client.url=http://localhost:30002/customerdata/api/v1/
blueriq.customerdata-client.username=blueriq
blueriq.customerdata-client.password=welcome

Exports
blueriq.exports.description=Exports
blueriq.exports.prefix=export
blueriq.exports.folder=exports
blueriq.exports.enabled=true

Security settings
blueriq.security.csrf-protection.enabled=false

Blueriq logging
#logging.level.com.aquima=DEBUG
#logging.level.com.blueriq=DEBUG
logging.file.name=logs/case-engine.log

Default Queue configuration, can be ommitted when overruled at specific configuration in application-case-
engine.properties ###
blueriq.default.rabbitmq.host=localhost
blueriq.default.rabbitmq.port=30010
blueriq.default.rabbitmq.username=guest
blueriq.default.rabbitmq.password=guest
blueriq.default.rabbitmq.virtualHost=/
blueriq.default.rabbitmq.ssl.enabled=false

application-case-engine.properties

blueriq.case.engine.concurrency.concurrent-consumers=1
blueriq.case.engine.concurrency.max-concurrent-consumers=1

blueriq.case.engine.data.mongodb.host=localhost
blueriq.case.engine.data.mongodb.port=30012
blueriq.case.engine.data.mongodb.database=caseEngine

blueriq.locking.mongodb.host=localhost
blueriq.locking.mongodb.port=30012
blueriq.locking.mongodb.database=locks

spring.quartz.job-store-type=memory

spring.quartz.properties.org.quartz.threadPool.class=org.quartz.simpl.SimpleThreadPool
spring.quartz.properties.org.quartz.threadPool.threadCount=2

For more information on concurrent consumers see Configuring RabbitMQ.

https://my.blueriq.com/display/DOC/Configuring+RabbitMQ

application-external-datasources.properties

Datasources PostgreSQL
blueriq.datasource.process-sql-store.url=jdbc:postgresql://bq-postgres:5432/blueriq
blueriq.datasource.process-sql-store.username=blueriq
blueriq.datasource.process-sql-store.password=welcome
blueriq.datasource.process-sql-store.driverClassName=org.postgresql.Driver
hibernate.process-sql-store.hbm2ddl.auto=validate

application-dcm-lists-publisher.properties

queue configuration from blueriq.default.rabbitmq can be overruled
blueriq.dcm.lists-publisher.rabbitmq.exchangeName=dcmListsEvents

Authentication

The synchronous operations are protected with basic authentication. To specify the credentials required to log in to the Case Engine, create a user in user
 with the role..properties case-engine

users.properties

#format: USERNAME=PASSWORD,PRIVILEGE1,PRIVILEGE2,...
#example: admin=welcome,agent,customer,underwriter

User for Case Engine
caseengine={noop}caseengine,case-engine

If you are using a different authentication provider, like LDAP, you can create a user in that provider instead of , as long as it has the users.properties
proper role.

Event logging

It is possible to enable logging for events sent to the Case Engine. A line is logged when the Case Engine starts processing the event and when it is
finished.

Events list

AbortTaskService
AbortTaskWithoutUnlocking
AssignTask
CompleteTask
CreateCase
DemuxedThrowMessageEvent
GetCaseInfo
GetTaskInfo
RemoveCase
ScheduledEvent
StartTask
ThrowMessage

How to enable

By default, the events are logged on INFO level. To specifically enable logging for the events only, configure the following package on INFO level:

hbm2ddl.auto

When using a production database, please use 'validate' instead of 'update' in combination with the supplied database scripts.

application(-case-engine).properties

logging.level.com.blueriq.dcm.caseengine.service=INFO

Example output

StartTask event logline:

2024-04-25 13:43:09.100 INFO c.b.d.c.c.CaseEngineRestController httpSessionId="
43C5CF48C812F97E301843659A09A04A" runtimeSessionId="" userId="caseengine" projectName="" projectVersion=""
currentPageName="" tenantName="" [trace=662a41cd99970f5e778c9835294b1413,span=be8f45537809ead6] - [startTask]
Starting transaction - task ID: '6' case ID: '662a41c4fcab766683cab7c5'

Finishing a case
Whenever the process for a case finishes, the case will be closed. This means that the following persistent parts of a case will be removed:

The process and its tasks and data in the process-sql-store
The case and its manual tasks in the DCM Lists Service's MongoDB database
The case document in MongoDB
Any remaining entries in the scheduler database
The case aggregate and the case data aggregate

We are aware that it may not be desirable to remove the aggregates, for example if your process doesn't have steps for archival. Therefore, we introduced
a property to control this behavior:

application-case-engine.properties

blueriq.case.engine.data.general.remove-aggregates-on-case-close = false

The default value for this property is .true

	Blueriq Case Engine

