
Functions and function calls

A function is a special relationship between inputs and outputs. The
function transforms the input into the desired output. In Blueriq,
functions do exactly that, and they can make use of the rule engine and fl

. As the inputs and outputs of a function are clearly defined, it is ows
clear what information is expected by the function, and which hattributes
ave an updated value after the function call. The internal workings of a
function are hidden, to reduce the long lists in Blueriq Encore and the
mental load of the Business Engineer. Both these points lead to a high
maintainability of your model.

Intended use
You may think of a function as a computation or a service which is
provided to you as a caller of the function.

Examples of functions are:

Calculating the interest that you need to pay for a loan over the
next years

Inputs: Loan amount, Number of years, Interest rate,
Monthly payment
Output: Total amount of money owed after given
number of years

Deciding if you are eligible for a subsidy for solar panels
Inputs: Type of roof, Size of roof in square meters,
Number of solar panels, Costs of solar panels,
Number of inhabitants
Outputs: Decision, Subsidy amount, Reason for denial

Table of contents

Intended use
Blueriq functions are intended for decoupling smaller
calculations. This is what they are good at and should be used
for.
Modeling
Input validation
Exposing the function as a REST webservice
Shortcut to exposed function flow
OpenAPI feed for exposed function flows
Securing an exposed function flow
Further Reading

Blueriq functions are intended for decoupling smaller calculations. This is what they are good at and should

be used for.

There are other scenarios, in which you might consider functions, for which a function may not be the best choice. Below there are some scenarios
discussed:

A function which has side effects. For example when a function stores data in an or writes data to an external system. This would aggregate
mean that the outcome of a function can differ after calling it multiple times. This may be confusing to users which expect the outcome to be
identical.
A function which interacts with the process engine. In basis this is the same as above, as the state of the process engine would change, and
the result of the function may be different on the second call. In fact using the process engine in a function currently does not work at all.
A function with complex parameters. When you need to send a complex structure with instances which have relations to other instances and
so on, then a web service is a much better option. Functions intentionally have simple parameters.
A recursive function. You could model a function which calls another function. There is however no mechanism in place to prevent infinite
looping and you have to be really carefull on what you do. Therefore this is discouraged.

Modeling
A function call can be compared to a service call in your . It behaves more or less the same, except that a different part of the model is used for flow
execution. To use a given function, you create a function call by filling in the input parameters, and mapping the output parameters. Here is an
example:

What is it for?

Functions are used to allow common operations to take place in
separate, easily reusable modules.

https://my.blueriq.com/display/DOC/Flow
https://my.blueriq.com/display/DOC/Flow
https://my.blueriq.com/display/DOC/Attribute
https://my.blueriq.com/display/DOC/Aggregate
https://my.blueriq.com/display/DOC/Flow

Now, you can place this function call in a flow from which you want to consume the function:

Input validation
When modeling a function, it is possible to check the validity of your input parameters. The input type is always checked, but other validations can be
added to the parameters. Please note that when a multi-valued attribute as target attribute, your parameter also becomes multivalued. The validations
can be added by adding a or to the input . This validation will then be triggered when calling the function. When validation rule validation type attribute
a validation is triggered there will be an error message, on screen for the user when the function is called from within Blueriq or in the JSON result
when exposed and called as a webservice.

Exposing the function as a REST webservice
Blueriq offers the option to expose a function as a REST webservice. This is done by selecting the Exposed as webservice checkbox in the properties
tab.

You can use the exception exit in case the function fails to execute.

Functions in library

Of course functions can be modeled in a project structure with multiple stacked modules, when doing this you have to be aware of this fact:
when calling the function, by default it will select the function definition from the lowest implementation module possible. It is possible to call
the function if specified at a higher (implementation) module, but you have to explicitly point to that definition.

https://my.blueriq.com/display/DOC/Validation+rule
https://my.blueriq.com/display/DOC/Global%3A+Validation+type
https://my.blueriq.com/display/DOC/Attribute

When you reload projects in the runtime after saving the flow with this option checked, the function can be approached as a webservice.

The URL of the webservice will be:

http://<environment>:<port>/Runtime/server/api/v2/function?
project=<project>&function=<flowname>&version=<branch>&module=<module>

In which <environment>, <port>, <project>, <flowname> & <branch> can be found by selecting the flow and right clicking on the start button on the
runtime overview and then copying the link address.

The call to the webservice is a JSON message containing the parameters defined in the function. The HTTP method being called is POST.

For the example used to calculate the loan remainder this would look like:

{
 "LoanAmount":100000,
 "NumberOfYears":5,
 "InterestRate":3.5,
 "MonthlyPayment":500
}

The webservice will also return a JSON message containing the output parameters of the function.

For the example it would look like:

{
 "MoneyOwed":25000
}

Shortcut to exposed function flow
It is possible to make a shortcut to an exposed function flow.

To do this you must add a shortcut in the application.properties with the following content:

When calling the webservice, the HTTP headers have to be set with Content-Type and Accept application/json

Changing contract

When a function flow is exposed as a web service, changing the parameters may break contract with the using party. Be careful when
changing the parameters while the exposed web service is already in use.

blueriq.function-shortcut.{shortcutname}.project=
blueriq.function-shortcut.{shortcutname}.version=
blueriq.function-shortcut.{shortcutname}.module=
blueriq.function-shortcut.{shortcutname}.function=

The url to call the shortcut will be: /Runtime/server/api/v2/function/shortcut/{shortcutname}/

If the property `blueriq.production.shortcutsOnly` is set and the runtime is running in production mode, only shortcuts can be used to start a function.

OpenAPI feed for exposed function flows
An OpenAPI feed of Function Flows exposed as a webservice is provided by the Runtime, see OpenAPI for more information.

Securing an exposed function flow
By default, an exposed function flow can be called without authentication. It is necessary to add at least one role to make sure that the endpoint is
secured and the user is authorized. If you add one or more roles to the function flow, the runtime will require credentials.

Further Reading
Flow type: function

https://my.blueriq.com/display/DOC/OpenAPI
https://my.blueriq.com/display/DOC/Flow+type%3A+Function

	Functions and function calls

