
1.

2.

Task behavior
Introduction

This page describes the status a task can have and what the behavior is per status runtime.

Possible task statuses are:

OPEN The task has the status and is available to be performed.open

STARTED The task has the status and is being performed.started

COMPLETED The task has the status and is finished. completed

CANCELED The task has the status and is not relevant any more for the process. canceled

EXPIRED The task has the status and is not performed in time and not relevant expired
any more for the process.

On this page:

Introduction
Definitions
Process init
Open
Started
Completed
Canceled
Expired
Process Ends
Schematic overview
Fail-safe scenarios

Definitions

Precondition - Business rules that must be evaluated and can result in or .TRUE FALSE
Applicable - All preconditions are met, the status is set to and the task is available to be performed. open
Automated - Can only be performed by a system.
Manually - Can only be performed through human interaction.
ProcessDAO - Blueriq process database which contains the current process state of an application.
TASKS table - A table in the process database with the current state of all tasks for all process instances.
application.properties - A text file with server properties used by a Blueriq application.
Runtime - An application that is executing Blueriq models.
Process - A process instance on the runtime.
Case stage - A stage in the reference process for a business function. Typically a process model of type phase which has a milestone as
precondition and its own milestone as postcondition.

Process init

When a process is triggered by a message event, a process instance is made. The init state of the process instance is decided by 2 components:

The line that flows out of the message event. The first node the process flows to will get the status If this is a task, then this task will be .open
required and and gets an entry in the TASKS table.open
The data in the message event will be used to decide what ad hoc nodes are applicable. All applicable ad hoc nodes will get an entry in the
TASKS table.

Open

A task gets the status when the task is applicable within a process. This means that the task has met its precondition. A precondition can be a open
business rule or a trigger. A business rule is logic that is evaluated by Blueriq and can be mapped to the process engine to give the precondition a
value. A trigger can be another task or an event like a timer or a message.

When a task is applicable, then it will get an entry in the TASKS table of in the processDAO. The start date is the date the task is applicable, and the
initial status will be set to Such tasks will be shown in a worklist and can be executed if the user has permission to start the task. .open open
When an automated task is applicable then it will start automatically. So an automated task will not be shown in a work list and changes status from op

 automatically to en .started
When an task is required then it be performed before exiting the process. When an task is not required but is applicable than the open MUST open
task be performed.MAY
When an ad hoc task is not applicable anymore and is not required it will be and is not available on the worklist. canceled

At the moment when an ad hoc task is applicable and required then it has to be performed. Even when the precondition changes back to . The FALSE
task stays on the work list because it is required and be performed.MUST

Current behavior - Blueriq 9.7

Precondition Required

MAY be performed TRUE FALSE

MUST be performed TRUE TRUE

Not relevant FALSE TRUE

Not relevant FALSE FALSE

MUST be performed TRUE -> FALSE TRUE

There is an improvement that will change this behavior, namely that the precondition overrules the required value. When the improvement is
implemented the next table can be used as reference:

Precondition Required

MAY be performed TRUE FALSE

MUST be performed TRUE TRUE

Not relevant FALSE TRUE

Not relevant FALSE FALSE

Not relevant TRUE -> FALSE TRUE

Be careful when modeling a dynamic process with required ad hoc tasks in combination with repeatable is set to . The process will only continue TRUE

when the precondition of the task is evaluated to after completing the task. If the precondition stays then the repeatable setting will kick in FALSE TRUE

and in combination with the required setting the task be performed again. Required can be conditional, so there are multiple scenarios how to MUST

handle this.

Started

A task gets the status when someone or a system starts to execute the task. A precondition to start a task is that the task must be and started open
thus applicable. The task will keep the status during the entire time it is performed.started

Manual tasks
When a task is started manually and cannot be finished due to an error it will do a roll back. This means that there is no transaction to the database
and the task status will be set back to So a manual task that receives an error can be executed again via the worklist..open
When a manual task is started it is also locked for other users. When the task is not available in the worklist.started

Automated tasks
When an automated started task gets an error it will stay in the status . There will not be a transaction to the database, but the task cannot started
be triggered again without intervention. The reason an automated task does not get the status is to prevent an infinite loop. First the cause of the open
error needs to be fixed before the task can be set back to Setting an automated task back to can be done by the run time API. Once the .open open
automated task is set from to it will trigger itself on the next tick of the portal timer. The portal timer is a server setting in a server started open
property.

Cancelling tasks
It is possible to cancel a task, which will set a task back to started .open

When the implementation has a cancel event and this event is used for example by pressing a cancel button the task does a roll back and gets the
status The task is available on the worklist..open

Sometimes it is needed to intervene and cancel a task. For example when someone closes his browser. Opening the browser again will open the
dashboard, but will not show the task in the worklist, because the task still has the status . There are 3 ways to cancel tasks and started started
set it back to .open

Use the server setting . This will cancel all tasks when...:blueriq.processengine.cancel-started-tasks=true

... the Runtime starts and an application is used for the first time

... in development, the reload project/projects/branch/settings buttons are clicked

... a new version of the application is published using the publisher

Reloading the project in the developer dashboard.
Use the run time API to change a task status from to . Information about the run time API can be found .started open here

An automated task will trigger itself when the status is set back to .open
A manual task will be available again in the worklist.

Completed

A task gets the status when a task is successfully performed. The task is not part of work lists any more. If the task is repeatable, then completed
after completing the task a new entry will be created in the table with the status and thus part of the worklist. The finished task has the TASKS open
status .completed

A task cannot be performed again if it is not repeatable. So make sure that all information is available after finishing the task. completed

Canceled

https://my.blueriq.com/display/DOC/Backend+REST+API+V1

A task gets the status when it is not relevant any more. For example, there exists a non-required ad-hoc task with status There is canceled .open
enough data within the case to finish the sub-process, then all tasks in the sub-process are canceled because they are not relevant any longer. open
A required task cannot be canceled and should always be performed unless it is not applicable any more (not implemented yet!).

Expired

A task gets the status when its timer exit evaluates . expired TRUE

There is a property that sets the Timer interval on a server. This property can be set in the Settings/Timer on the developer dashboard or in the appli
 file. At every interval all relevant timer nodes will be evaluated. When a timer exit is evaluated then the timer exit event cation.properties TRUE

will be flowed (the process engine will follow the line from the timer exit event). The task gets the status and is not available on the work list expired
and thus cannot be performed any more.

Be careful with timeout dates in dynamic processes, because when a task timed out the taken action cannot be undone. You must take into
consideration the level of empowerment you give the system in telling a user he or she cannot perform certain actions anymore. It is better to use due
dates on events and let an event notify a user, or add new information to the case so that new decisions can be made which can steer the process to
a different direction if needed.

There are patterns for time management in a dynamic process which do not use the expire date.

Process Ends

All not required tasks will get the status . Required tasks must be performed before the process can end.canceled

Schematic overview

Fail-safe scenarios

This has a few scenarios that describe behavior of the process engine in dynamic process handling with failures and how to fix the failures.page

https://my.blueriq.com/display/BKB/9.+Fail-safe

	Task behavior

