
1.

2.

3.

4.

5.

How to create a performing worklist
When creating a dynamic case management application, you want to show a to the knowledge worker in which he/she can see the available AQ_WorkList
tasks. As end users do not like to wait for relevant information to load on the screen, this worklist needs to be able to retrieve the relevant information fast.
Blueriq makes the worklist as fast as possible from a technical point of view, but there are guidelines for you as Business Engineer to choose settings that
result in a better performance.

Although this page concerns the worklist, all advice also holds for both the and the . As these list automatically returns less AQ_CaseList AQ_TaskList
results, it is less likely that you experience performance problems with it.

Step-by-step guide

When a dynamic case management solution has been in production for a significant amount of time, the number of cases and tasks that are present in the
database can also grow increasingly, if more cases are created than closed. Think of long-running cases that take months or years to finish. End users
want to experience the same performance with such a full database as with an empty database. An important factor for a performing worklist is the number
of results that match your search. If you model a worklist that always returns all tasks, than this worklist will not perform with an increasingly large
database. We advise to create a worklist that filters as many results as possible, in order to create a good experience for the end user. This article
describes some pointers that help you achieve a good performance.

Avoid the option.Show all tasks
If this option is unchecked, the worklist only shows tasks that are routed to the current user. This should limit the result set significantly. If you
check this option, you should apply filters to limit the result set, as shown in the next steps.

 This filter should configure the list to only show certain tasks. For example, an insurance application can be for a car Set a filter on a column.

insurance and a health insurance. As a knowledge worker may have a specialization on car insurances, it would be good to only present tasks to
him/her that belong to car insurance applications. It is possible to filter on a column that is not shown to the user by using the setting Visible
(above the filter). A list for health insurance tasks can be modeled on a different page.
You can let the end user help to . It is possible to use an attribute in a filter expression that was placed on the page for user refine the search
input. You can use this to drastically reduce your search result. A good design here is that the attribute is initially placed on a page where the
worklist is not visible (either its precondition is false, or it is on a different page), and only after the user supplied filter information to show the list.
After the filtered list is shown, you could let the end user refine the search, by using a refresh on the attribute. In this way there is no moment in
which an unfiltered list is displayed to the end user.
Distribute entries across multiple worklists. If you for example have three categories for tasks with low, medium and high priority, you can
model that as three different worklists. A page is only loaded when all content on it has been loaded. Having 3 worklists on the same page means
that the page is not displayed until the entries for the last worklist are retrieved. However placing the three worklists in different widgets results in
the behavior that the content of the first worklist is shown as soon as it is ready, after which it is proceeded to loading the second widget, etc. With
this behavior you can influence what the user sees first, and load more important worklists faster. By splitting up a worklists into multiple worklists
you will also not encounter the problem of reaching the maximum retrieved entries as easily.
You can . This setting was introduced in version 9.4. This is a configurable runtime limit the number of the results coming from the database
setting that will speed up the worklist for large result sets.

In the properties file you can set the limit of the worklist and caselist by parameters.

Java

Setting the limit is done in .spring.config.additional-location

https://my.blueriq.com/display/DOC/Container+type%3A+AQ_WorkList
https://my.blueriq.com/display/DOC/Container+type%3A+AQ_CaseList
#

5.

6.

processengine.worklist.limit=x
processengine.caselist.limit=x

You can configure the message that is displayed to the end user in the (both Java and .Net)message.properties

worklist.paging.limit.applied.feedback=Results are limited to the maximum of {0}
caselist.paging.limit.applied.feedback=Results are limited to the maximum of {0}

There is one disadvantage however, for versions 9.4 up to 9.8. The sorting and paging of the results is done after the results are retrieved, which
means that your sorting might not be reliable.

For example, you limit the retrieved results to 100.000 entries. However, 150.000 entries in the database match your search. You sort the
100.000 entries that were retrieved from the database on priority. The end user might think that he is performing the task with the highest priority,
but this might not be true as the highest priority task could be among the 50.000 tasks that were not retrieved. The end user may also have the
impression that there are fewer tasks in the system than actually present, as paging will show for example 10.000 pages of 10 tasks each.

From version 9.9 and later this mechanism has been improved. From that version on, only one page of data is read from the database, and this
one page is correctly sorted. There are two reasons why this setting is still useful. (1) When creating a styling for the pagination of the worklist that
uses a dropdown box, then this dropdown box can become very large. When having for example 10.000 pages the browser might need to work
very hard to create all the entries and possibly freeze or crash. (2) Chosing a page with a high page number takes longer than opening a page
with a low page number. With this setting you can reduce the number of pages so that the end user can not choose such a high page number.
We believe that there is no use case to go to pages with a very high number, as you would rather refine your search using the filters or use
sorting.
Update to the latest version of Blueriq. Although this advice holds in general, we have made significant performance improvements in 9.9 and
up. Updating to the latest version ensures that you can get the maximum out of your worklist, without the need to change how you model your
application. We will be doing more performance improvements in the future as well.

Advice for database maintenance

Blueriq provides a set of general-purpose indexes, but for large databases we recommend dropping the indexes that aren't used in your application, as
well as adding any necessary indexes that result in better execution plans for the most frequently used queries. The queries generated by AQ_WorkList
and AQ_CaseList can be monitored by setting the log level of to . A few examples of indexes you might create depending on org.hibernate.SQL DEBUG
the configuration of your worklist and the usage patterns of your users are:

if your worklists have custom field columns that are often used for searching, you should create index (,) on the tabletaskId name customFields
if your worklists have data columns which are often used for searching, you should create the following composite indexes:

(,) on the tablecaseId entityName instances
(,) on the tableinstanceId attributeName instanceAttributes
(,) on the table (note: use the appropriate "value" column depending on instanceAttributeId stringValue attributeValues
the data types of the attributes shown in your worklists

if your worklists use the column and this is used for filtering (in Studio) or searching (by users on the frontend), you should create CaseID
composite indexes which start with the column. For example, if your worklist has columns , and , there caseID Case ID Task Name Priority
is a filter on the column in the Studio model and the users often search on the column, you should create the composite Case ID Task Name
index (,) on the table.caseId name tasks

Keep in mind that query performance depends not only on the indexes but also on the data and the usage patterns of your users. Periodically monitor the
execution plans of the worklist queries on real data and determine whether any changes to the execution plans occurred since the last check. Add indexes
where appropriate in order to maintain good performance.

We also recommend that you monitor index fragmentation in production databases, as index fragmentation can lead to poor query performance. Your
indexes become more fragmented the more data is inserted or deleted. Implement an index maintenance plan to reorganize or rebuild your indexes once
the fragmentation level exceeds a set threshold.

Related articles

How to use Decision Requirements Graphs to visualize ad-hoc tasks in business process modeling
How to handle long-term monitoring and archiving

https://my.blueriq.com/display/BKB/How+to+use+Decision+Requirements+Graphs+to+visualize+ad-hoc+tasks+in+business+process+modeling
https://my.blueriq.com/display/BKB/How+to+handle+long-term+monitoring+and+archiving

	How to create a performing worklist

